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Abstract—In urban canyon environments, global navigation
satellite systems (GNSSs) frequently fail to provide reliable
positioning services due to signal obstruction and multipath
effects. This article proposes a pedestrian positioning method that
integrates magnetic field matching, learned inertial odometry,
and an inertial navigation system (INS). Initially, the feasibility
of magnetic matching positioning is validated by investigating
the magnetic field characteristics in typical urban canyons. Sub-
sequently, magnetic field profiles are constructed using relative
position and attitude information generated by learned inertial
odometry, rather than conventional pedestrian dead reckoning
(PDR), thereby enhancing the adaptability of the magnetic
matching algorithm to transition between different phone hold-
ing modes and usage scenarios. Furthermore, to address the
limitation of the extended Kalman filter (EKF) in integrating
historical state information, the multistate constraint Kalman
filter (MSCKF) is employed to fuse INS, relative displace-
ment increments from learned inertial odometry, and magnetic
matching positioning results, thus formulating a robust and
reliable pedestrian positioning solution. The proposed method
is evaluated through multiple field tests in an urban canyon
environment, covering an area of 5000 m? with a total walking
distance of 8.25 km, achieving a positioning accuracy with a
root-mean-square (rms) error of 2.98 m.

Index Terms—Inertial navigation system (INS), magnetic field
feature matching (MFM), pedestrian dead reckoning (PDR),
pedestrian positioning, urban canyons.

I. INTRODUCTION

OCATION-BASED services (LBSs), such as pedes-

trian navigation, smart city, and express delivery, have
emerged as a fundamental component of daily life [1]. The
reliability and precision of positioning are critical to these
services [2], [3]. Contemporary solutions for LBS predomi-
nantly use smartphones as the primary platform, necessitating
high-precision positioning capabilities through these devices
[4]. While the global navigation satellite systems (GNSSs)
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provide accurate positioning in open outdoor environments,
their performance significantly deteriorates in urban canyons
due to signal attenuation and multipath effect [5], [6].

GNSS remains the primary research focus for pedestrian
positioning due to its global coverage and infrastructure-
independent characteristics in urban canyon environments. To
address resulting positioning errors, research primarily focuses
on error modeling [7], [8] and signal path identification [9],
[10], [11], [12]. While these methodologies demonstrate poten-
tial for improving GNSS positioning accuracy, their correction
efficacy remains limited when implemented in consumer-grade
positioning terminals such as smartphones, primarily due to
inherent signal acquisition limitations associated with low-cost
antennas. Shadow matching (SM) represents another promi-
nent GNSS-based positioning methodology. This approach
fundamentally uses the GNSS signal obstruction effects
generated by buildings and other urban structures to facili-
tate positioning [13], [14], [15]. However, commercial-grade
GNSS chips embedded in smartphones exhibit significant
signal-to-noise ratio (SNR) fluctuations, with signal inten-
sity from a single satellite varying dramatically within short
temporal intervals. These technological constraints currently
limit SM’s applicability for smartphone-based pedestrian
positioning [16].

In addition to GNSS-based positioning methods, various
other positioning solutions, such as WiFi, cellular networks,
Bluetooth, magnetic field feature matching (MFM), and pedes-
trian dead reckoning (PDR), are extensively employed for
pedestrian positioning in urban canyons. Zhao [17] and Ital-
iano et al. [18] evaluated the positioning performance of
cellular network signals in urban environments through simu-
lation experiments and found that cellular network positioning
methods encounter inaccuracies due to signal obstruction
and multipath effects in urban canyons. Wang et al. [19]
implemented a triangulation positioning method based on
Bluetooth received signal strength (RSS), making it unreliable
in urban canyons. Currently, the majority of wireless signal-
based positioning methods employ fingerprint matching [20],
[21], which achieves high positioning accuracy. Nevertheless,
their performance is contingent upon the deployment of base
stations and the accuracy of the fingerprint database, thus
limiting their practicality in urban environments.

PDR is a relative positioning method wherein position errors
accumulate proportionally to the distance traveled, leading
to a significant degradation in positioning accuracy during
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extended navigation periods [22]. Currently, predominant PDR
methodologies can be categorized into two primary paradigms:
traditional step model-based PDR and deep learning-based
PDR. The former relies on precise step detection, step length
estimation, and heading estimation. However, the accuracy of
these components is sensitive to variations in the pedestrian’s

handheld device posture [23], [24]. The latter is garner-
ing considerable attention due to its enhanced robustness
and noise resilience. Relevant research includes employing

deep-learning methods to optimize key modules within the
traditional PDR system, as well as constructing end-to-end
neural network models for predicting pedestrian displacement
(referred to as deep learning inertial odometry of Neural-PDR)
[25], [26]. Nonetheless, existing PDR methods, irrespective
of whether they are based on step model or deep learning,
typically encounter issues of error accumulation and trajectory
divergence, particularly in long-duration navigation scenar-
ios. Consequently, PDR currently functions primarily as an
auxiliary positioning technique, contributing to multisource
fusion positioning schemes. The primary fusion methodologies
currently encompass PDR/GNSS [27], [28], [29], [30], [31],
PDR/wireless signals, and PDR/GNSS/wireless signals [32],
[33]. While these positioning schemes can leverage PDR to
achieve robust positioning results, the absolute positioning
accuracy remains contingent upon the stability of GNSS sig-
nals and the precision of wireless signal fingerprint databases.

The geomagnetic field frequently exhibits distortions due
to interference from the ferromagnetic materials in the sur-
rounding environment, displaying distortion characteristics
that correlate significantly with location, making them applica-
ble for matching positioning. Compared to prevalent wireless
signals, the magnetic field characteristics in urban environ-
ments offer advantages such as ubiquitous presence (i.e., no
deployment), stability, and no attenuation by the human body.
Currently, MFM for indoor positioning has been extensively
researched [34], [35], [36], [37], achieving promising results.
However, in urban canyon environments, the distribution of
magnetic field characteristics has not been thoroughly studied.
Even though the geomagnetic field may be distorted by
ferromagnetic materials in these scenarios, its potential for
positioning remains uncertain.

Therefore, this article aims to improve pedestrian posi-
tioning performance in complex urban canyon environments
by leveraging the MFF. By analyzing the characteristics of
MEFF in urban canyons, the feasibility of employing MFM for
positioning in such environments is demonstrated. Considering
the diverse modes pedestrians hold smartphones, we use deep
learning-based inertial odometry (Neural-PDR) as a substitute
for traditional step model-based PDR, integrating it with MFM
for positioning. Furthermore, given that smartphones typically
do not support computationally intensive neural network mod-
els, the relative displacement increments generated by the
lightweight learned inertial odometry neural network (LLIO-
Net) [26] are employed to construct more accurate mag-
netic field strength sequences (MFSs), thereby significantly
enhancing the precision and reliability of MFM. As the
extended Kalman filter (EKF) lacks the capability to effec-
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tively integrate historical state information, the multistate
constraint Kalman filter (MSCKF) is adopted to fuse the
relative displacement increments and the MFM results, ulti-
mately formulating a robust and highly reliable pedestrian
positioning method for urban canyon environments. The main
contributions of this article are as follows.

1) We analyzed the distribution of MFF in urban canyon
environments by constructing magnetic field maps in three
representative settings. The objective is to assess the feasibility
of using MFF to assist pedestrian positioning in urban canyon
environments characterized by poor GNSS signal quality and
limited radio signal sources.

2) We proposed a pedestrian positioning method that inte-
grates an inertial navigation system (INS), deep learning-based
inertial odometry, and MFM. The algorithm uses displacement
increments derived from the deep learning inertial odometry
to generate MFS, thereby achieving a more stable MFM.
Furthermore, the MSCKF is employed to fuse INS, the deep
learning-derived relative displacement increments, and the
MFM results. The algorithm demonstrates robust adaptability
to various smartphone holding modes and performs effectively
in environments including stairs, providing continuous and
reliable positioning results for pedestrians in urban canyons.

The remainder of this article is organized as follows.
Section II evaluates the distribution of MFF in urban canyons.
Section III presents an overview of the proposed methods.
Sections IV and V detail the MFM algorithm and the multi-
sensor fusion algorithm proposed in this article, respectively.
Section VI discusses the experimental setting and analyzes the
results. Finally, we conclude this article and provide future
work in Section VII.

II. ANALYSIS OF MAGNETIC FIELD CHARACTERISTICS
IN URBAN CANYON

The geomagnetic field in indoor environments exhibits uni-
versally distorted characteristics due to the interference caused
by ferromagnetic materials present in the building structures.
These distortion characteristics are frequently associated with
locations and can be leveraged for pedestrian positioning.
In contrast, urban canyons experience relatively less interfer-
ence from ferromagnetic materials. Intuitively, magnetic field
characteristics in these scenarios are weaker than those in
indoor environments. However, the complexity of the urban
canyon environment may still lead to geomagnetic distortions
that possess the capability to differentiate locations. Thus,
in this section, we will focus on evaluating the magnetic
field characteristics within urban canyon environments and
analyzing their distribution, aiming to explore the feasibility of
enhancing pedestrian positioning experiences in urban canyon
environments.

In this article, we establish magnetic field fingerprint
databases within three typical urban canyon environments,
evaluating the distinguishability of location information
derived from the MFFs in these databases to determine the
applicability of MFF in urban canyon environments. The
database construction employs the magnetic field fingerprint-
ing scheme based on P-POS [38]. The equipment used for
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Fig. 1. Bird’s eye views of the three test areas.

building the database includes the Huawei Mate 40 Pro and
a foot-mounted inertial module. The test areas are located in
JieDaoKou business district and Wuhan University. Area A
encompasses the sidewalks in front of YinTai shopping center,
the sidewalks in front of QunGuang shopping mall, and the
underground pedestrian passage connecting the two sidewalks.
This area is bordered by these two commercial buildings.
Area B in Wuhan University consists of the western section
of the sidewalk adjacent to the Xinghu Laboratory Building,
which is flanked by the Xinghu Building on one side and
a dormitory building on the other side. Area C in Wuhan
University is under the overhead corridor that bridging two
tower buildings, with several supporting columns standing in
the area. Fig. 1 shows a bird’s eye view of this area on Google
Earth, where the region enclosed in a red box represents the
areas where the magnetic field databases were constructed. The
environmental characteristics of these three areas are detailed
in Table I.

To construct the database for each area, a collector walked
in a comprehensive S-shape pattern across the entire survey
region, ensuring dense and uniform coverage. This systematic
traversal was conducted at a normal walking pace. The data
collection was performed during a weekday under clear and
dry weather conditions and in periods of moderate pedestrian
traffic, as the disturbances from other people are minor.
Notably, instead of multiple repeated collections of the same
path, our single-pass, area-wide S-shaped survey method is
highly efficient; for instance, the complete database was con-
structed in approximately two hours. Further details regarding
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TABLE I

DETAILED DESCRIPTION OF THE ENVIRONMENTAL
CHARACTERISTICS OF THE THREE AREAS

Area Environmental Characteristics
The area is enclosed by high-rise building on both
A sides of the road and contains fixed structures.

There are underground pedestrian passages and
subway tunnels beneath the ground.
There is a tall building that shields the interior from
B the sky, while on the other side of the path, there
are two multi-floor dormitory buildings.
The area is under an overhead corridor between
C two tower buildings, with several supporting
columns containing ferromagnetic materials

the magnetic field database construction can be found in our
previous work [38].

Fig. 2 presents the magnetic field fingerprint databases for
the three areas, with the vertical and horizontal axes represent-
ing the northward and eastward positions, respectively, while
the color indicates the values of the magnetic field strength.
Fig. 2(a)—(c) depicts the north, east, and vertical components
of the magnetic field strength for the area, respectively.

Area A is interconnected through an underground pedestrian
passage, linking the sidewalks on both sides of the street.
And this scenario serves as a significant transportation hub,
with metro tunnels also situated underground. Furthermore,
the sidewalks contain numerous structures, such as benches
and streetlights. Most of these structures contain ferromagnetic
materials, which cause significant interference and result in
distorted magnetic field characteristics. Analyzing the mag-
netic field fingerprint database, it can be observed that the
magnetic fluctuations within a 2 ~ 3-m range typically exceed
50 mGauss. In some places, they even reach 400 mGauss.
Area B, particularly on the side adjacent to the dormitory
buildings, is in close proximity to the building’s walls, where
the reinforced concrete significantly influences the surrounding
magnetic field. The closer one is to the building walls, the
more pronounced the MFF become. The magnetic fluctuations
within approximately 5 m of the building generally exceed
50 mGauss. In area C, the presence of columns containing
ferromagnetic materials significantly affects the magnetic field
distribution in this area. The MFF becomes increasingly pro-
nounced as one approaches these columns, with fluctuations
typically exceeding 30 mGauss within this environment.

Meanwhile, to provide a more intuitive visualization of the
magnetic field distribution within urban canyon environments
and to analyze the extent of its fluctuations, an additional
trajectory was incorporated into Area A. Fig. 3 illustrates
the trajectory on Google Earth alongside the corresponding
magnetic field measurements in the n-frame. As depicted
in the figure, the magnetic field characteristics along this
trajectory exhibit significant spatial fluctuations. Notably, the
amplitude of magnetic field strength fluctuations typically
exceeds 50 mGauss over segments of the trajectory. Currently,
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Fig. 2. Magnetic field fingerprint database of Area A, B and C. (a) North component. (b) East component. (c) Vertical component.
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Fig. 3. Test trajectory in Area A (Google Earth View) and corresponding
n-frame magnetic field.

the noise level of smartphone magnetometers is approximately
10 mGauss, indicating that the magnetic fluctuations in these
scenarios can be detected. The magnetic field fluctuations in
these environments can be easily detected, making it suitable
for MFM.

Overall, in regions where magnetic field fluctuations sig-
nificantly exceed the noise fluctuations of the smartphone’s
magnetometer, MFM can certainly be used for positioning; for
example, in the three areas tested in this article (urban canyon
environments), where environmental magnetic field distortions
are formed due to interference from ferromagnetic buildings.
Conversely, in areas without the ferromagnetic buildings, such
as boulevards and playgrounds, the magnetic field does not
exhibit positional distinctiveness and thus cannot be used
for MFM.

Furthermore, it is noteworthy that the presence of abun-
dant temporary ferromagnetic building materials within urban
environments can potentially lead to localized temporal incon-
sistencies in the magnetic field database. However, considering
the property that magnetic interference intensity from fer-
romagnetic materials attenuates with the inverse cube of
distance, the field strength from such sources diminishes at
distances beyond 1-2 m. Given that pedestrians typically
maintain a safe clearance from such obstacles during navi-
gation, they generally remain outside the effective range of
this magnetic interference during actual walking. Moreover,
temporary structures in urban environments are frequently
sparsely distributed, which inherently mitigates the risk of
widespread field superposition. Consequently, within urban
canyon environments, the cumulative influence of temporary
building materials on the overall magnetic field database is
negligible. This suggests that the magnetic field database
of urban environments exhibits robust long-term stability,
rendering them suitable for MFM over considerable time
spans. To empirically validate this assertion, the positioning
experiments presented herein were performed incrementally
over a period of 1-3 months following the initial construction
of the magnetic field database. This temporal separation pro-
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vides empirical evidence supporting the purported long-term
stability of the magnetic field.

III. SYSTEM OVERVIEW

Given that the magnetic field at a specific location can
encompass up to three dimensions of information, along with
the observation that various locations exhibit similar magnetic
field strengths, MFM typically necessitates sequence matching
to enhance the distinctiveness of magnetic field fingerprints.
The positioning accuracy of this method primarily depends
on the completeness and continuity of the relative trajectory.
However, under the complex dynamic conditions of pedestri-
ans holding smartphones, the orientation of the smartphone
sensors and the pedestrian’s forward motion constantly vary.
Moreover, in complex urban canyon environments, there are
underground passages and overpasses that include stairs. In
these scenarios, traditional PDR based on the step length
model is inadequate to provide a reliable sequence and
adversely affects the positioning performance of MFM. There-
fore, in this article, we leverage the displacement increment
output by the LLIO-Net to aid in developing a more accurate
MFM solution. Furthermore, based on the results generated
by MFM, we establish a more robust and reliable pedestrian
positioning method.

The block diagram in Fig. 4 illustrates the architecture
of system algorithm. The system comprises two primary
modules: the PDR module and the MFM module. These two
modules incorporate the traditional position loose integration
algorithm. The PDR module consists of the LLIO-Net output
and INS Mechanization. By integrating the displacement incre-
ments from the LLIO-Net as observation in Mechanization, a
robust PDR is achieved (Neural-PDR). Given that the displace-
ment increments from the LLIO-Net incorporate historical
state information, the EKF is insufficient. Consequently, the
state dimensions need to be expanded to form the MSCKF.

The MFM module relies on the relative displacement
increments provided by LLIO-Net, in conjunction with magne-
tometer output, to generate MFS. Given that the magnetometer
typically operates at a high frequency (e.g., 100 Hz), the gen-
erated MFS is also a high-frequency sequence and necessitates
downsampling. Subsequently, the initialization of MFM is
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performed, which initially involves a global search matching.
Individual magnetic field strength or MFS generally lacks
unique identifiability over extensive areas. Consequently, rely-
ing purely on MFFs is insufficient for achieving accurate
initial position matching. Thus, during the system initialization
stage, MFM necessitates complementary wide-area absolute
positioning technologies to furnish an initial position estimate.
Such positioning methodologies, including GNSS, wireless
signals, and UWB, despite variations in their positioning
accuracy, are all capable of providing the requisite initial
position data for magnetic matching. Given that an in-depth
analysis of these auxiliary positioning technologies is beyond
the scope of this article, a simplified method was adopted:
an approximate initial position is manually designated. This
designated position subsequently served as the foundation
for generating the initial MFS required to commence the
initialization search and matching procedure.

Upon successful matching, the current position and heading
angle are reset, followed by subsequent tracking matching.
During the tracking matching phase, the search range is con-
fined to the vicinity of the initialized position. Once matching
is successful, the position obtained from MFM is incorporated
into the filter as observation information.

IV. LLIO-NET ASSISTED MAGNETIC FIELD
MATCHING ALGORITHM

Because of the frequent inadequacies of traditional PDR
algorithms based on the step-length model in generating
reliable sequences when pedestrians modify their smartphone-
holding modes, the production of stable MFS sequences is
hindered, subsequently impacting the positioning results of
MFM. Consequently, in this section, we introduce an MFM
algorithm assisted by LLIO-Net, which employs the stable and
reliable relative trajectories generated by LLIO-Net to create
MEFS, thereby enhancing MFM performance. The subsequent
discussion elucidates two pivotal components: the LLIO-Net
model and the magnetic field matching.

A. LLIO-Net Model

LLIO-Net maps inertial measurement unit (IMU) data to
pedestrian relative displacement over specified time inter-
vals, enabling the estimation of displacement and associated
uncertainty. This relative displacement, integrated with mag-
netometer outputs, facilitates the generation of MFS for MFM.
LLIO-Net employs a residual multilayer perceptron (ResMLP)
[39] architecture as its feature extractor, which uses fewer
parameters compared to conventional multilayer perceptron
(MLP) algorithms. The model comprises three primary com-
ponents: a feature conversion section that transforms IMU
data into a feature matrix, a feature extractor that derives
salient information from the feature matrix, and a regression
layer that estimates pedestrian displacement and corresponding
uncertainty. The LLIO-Net model architecture is illustrated
in Fig. 5.

The training of the LLIO-Net model necessitates parameter
optimization to minimize prediction errors, and preprocessing
of raw IMU data constitutes a prerequisite for model training.
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Fig. 5. LLIO-Net model architecture [26].

Initially, IMU measurements undergo zero-bias compensation,
followed by transformation from the body frame (b-frame,
denoted by the superscript b) to the navigation frame (n-frame,
denoted by the superscript n) using attitude information. This
transformation mitigates attitude and zero-bias effects, thereby
providing stable input for subsequent model training.

The model training implements a dual-phase strategy
employing mean square error (mse) and negative log-
likelihood (NLL) loss functions. Initially, mse serves as the
optimization criterion, quantifying the average squared dif-
ferences between predictions and truth values, effectively
capturing overall error trends. Training continues until mse
convergence, indicating the model’s acquisition of funda-
mental data characteristics. Subsequently, the optimization
criterion transitions to NLL for refinement. NLL, commonly
used in probabilistic frameworks, measures the discrepancy
between predicted and actual probability distributions. By
minimizing NLL, the model precisely calibrates its parameters
to better approximate the data’s probabilistic characteristics,
thereby enhancing predictive accuracy. The training process
concludes upon NLL convergence.

This article employs a comprehensive dataset comprising
40 h of pedestrian positioning data for model training. The
dataset was curated to be highly diverse, covering a wide range
of environments (e.g., underground garages, urban canyons,
large buildings), pedestrian gaits, and natural smartphone
holding modes (e.g., hand-held, in-pocket, swinging), with
data collected from six participants using multiple smart-
phones to incorporate various sensor error characteristics,
thereby enhancing model robustness. To rigorously assess the
model’s generalization capabilities and practical applicability,
the dataset was randomly partitioned into three subsets: 80%
for training, 10% for validation, and 10% for testing. The
validation subset facilitates performance monitoring during
training, mitigates overfitting, and optimizes hyperparameters.
For the error analysis on the test subset, a high-precision
reference trajectory was generated by Foot-INS. This system
leverages a combination of zero-velocity updates (ZUPT)
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to suppress sensor drift, sparse control points for global
correction, and a Rauch-Tung-Striebel (RTS) smoothing for
optimal trajectory estimation. This method generates reference
trajectories with decimeter-level accuracy, which serve as a
reliable ground truth for the evolution of the LLIO-Net model.
On the test subset, the trained LLIO-Net model demonstrates
an average relative position error of 0.884 m for 1-min walked
trajectories and an average relative error of 0.237 m for 10 m
displacements.

B. Magnetic Field Matching

The MFS is generated by integrating the relative dis-
placement output from LLIO-Net with magnetometer outputs.
However, given that the magnetic field is a low-frequency,
slowly varying signal, and the magnetometer’s operating
frequency is typically high (e.g., 100 Hz), in practical appli-
cations, the magnetometer’s elevated sampling rate does not
enhance positioning accuracy but increases computational bur-
den. Consequently, resampling of the MFS is imperative.

As the MFS is generated through the relative displace-
ment output by LLIO-Net, which lacks explicit step point
information compared to PDR, fixed-frequency step points
are employed for resampling, established at 2 Hz in this
article. Initially, pedestrian dynamics are assessed, and step
points are constructed exclusively under nonstatic condi-
tions. Subsequently, during nonstatic periods, step points are
extracted at a 2 Hz frequency, with their positions derived from
LLIO-Net, which can be expressed as

[Nki| _ |:Nk—1 +ANDL:| )

Ej Ei1 + AEpL

where N, and E; represent the north and east positions in the
n-frame at the kth time step, respectively; ANpp and AEpp
represent the components of position increment output by
the network model in the north and east directions, respec-
tively. The relative displacement increments generated by
LLIO-Net exhibit smoothness, facilitating the search of match-
ing sequences in magnetic field matching. The nearest attitude
and magnetic field strength observations are used to complete
the resampling process.

The resampled low-frequency MFS can be expressed as [37]

ri (CZ)l Mif
o (Cy), B
where i denotes the ith epoch in the MFS; r" = [r, r. |
represents the planar position vector, comprising its north and
east components; Cj is the direction cosine matrix from the
b-frame to the n-frame, which is output by the INS; i’
represents the 3-D raw output of the magnetometer in the
b-frame.

Given the assumption that a trajectory in the magnetic field
fingerprint database exists that is identical to the pedestrian’s
actual trajectory, the MFM problem can be reframed as a
task of matching relative and absolute trajectories [37]. The
differences between these two trajectories primarily stem from
rotation and translation. Consequently, the strategy adopted in
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this article involves establishing maximum values and step
sizes for translation and rotation on the relative trajectory
generated by LLIO-Net, thereby creating a set of potential
candidate trajectories, as illustrated in Fig. 6. By iterating
through all candidate trajectories’ corresponding magnetic
field sequences, the similarity between the observed MFS
and candidate MFS is computed using dynamic time warping
(DTW). The candidate MFS exhibiting the highest DTW sim-
ilarity is selected, and its corresponding candidate trajectory
is considered to be the most accurate representation of the
pedestrian’s actual path. The positioning corresponding to the
last point on this optimal trajectory is subsequently determined
to be the pedestrian’s current location.

While the MFS generated by LLIO-Net furnishes reliable
directional information, it exhibits scale discrepancies con-
cerning distance. The DTW algorithm can achieve superior
matching between two sequences of different lengths by
locally stretching the time series. The methodology is bifur-
cated into two phases: initially, the distance matrix between
the target sequence and reference sequences is computed.
Subsequently, the path exhibiting the minimal cumulative sum
of elements from the bottom-right to the top-left of the distance
matrix is identified. The process of identifying the optimal path
is delineated as follows: commencing from the terminal grid
point (i, j) of the two sequences, the search progresses to the
preceding grid points (i — 1,j — 1),(i — 1, ), and (i,j — 1),
selecting the grid point with the smallest distance among the
three as the preceding grid point. The cumulative distance of
the optimal path can be expressed as

D;; =d;;+ min (Dj_1,j-1, Di_1,j, Dij-1) 3)

where d;; represents the local distance; D;; denotes the
minimum cumulative distance from the starting point to the
grid point (i, j). Following each successful magnetic field
matching, to ensure the precision of subsequent positioning,
it is necessary to reset the MFS, encompassing both position
and heading resets. The objective of the position reset is to
align the MFS position with the corresponding location in
the successfully matched magnetic fingerprint database. The
position reset can be mathematically expressed as

dn|
de - rraw

- "?MFM
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) cosy —siny | | dn
Tnew =Tamem T Tomem T [sinzﬁ cosy } [de} @

where r,, and r}., denote the positions of the original
and updated MFS, respectively; 7o\ represents the central
coordinate of the magnetic grid following successful matching;
rimpm indicates the grid position offset; i is the heading offset.
The objective of heading reset is to align the initial heading of
the MFS with the heading of the most similar trajectory in the
magnetic fingerprint database. The mathematical formulation
for heading reset can be expressed as

cosy —siny 0
z,new = Simﬁ COS‘P 0 z,raw (5)
0 0 1
where Cj .., and C} ,,, represent the attitude matrices of the

original and updated MFS, respectively. Through the reset
of position and heading, the MFS achieves alignment with
the most congruent trajectory in the magnetic fingerprint
database, thereby mitigating cumulative errors and enhancing
the precision of positioning.

V. INS/LLIO-NET/MFM MULTISOURCE FUSION

Any single sensor is difficult to provide reliable and con-
tinuous localization. Consequently, it is imperative to use
multisensor fusion to enhance positioning performance. In
this article, we integrate INS, LLIO-Net, and MFM through
the MSCKEF, thereby establishing a more robust positioning
scheme.

A. Filter Design

The MSCKEF effectively leverages historical state informa-
tion, thereby overcoming the limitations inherent in the EKF,
which relies exclusively ON current state estimates. Given
that the displacement increments generated by LLIO-Net
incorporate historical information, this article adopts MSCKF
to integrate multiple positioning sources. With INS as the
core, we use the position increments output by LLIO-Net
and magnetic field matching positioning results to correct
the system’s positioning errors. The traditional INS algorithm
considers numerous minor error corrections, which are less
effective for consumer-grade IMUs embedded in smartphones
due to their high noise levels. Consequently, the INS algorithm
implemented in this article only considers sensor noise and
bias effects, while disregarding minor correction terms such
as Earth rotation. The detailed derivation of the kinematic
equations for such a simplified model, the linearization process
for the error state, and the formulation of the continuous-time
dynamics matrix and noise-driving matrix are well-established
and thoroughly described in [37] and other seminal works
on visual-inertial fusion [40]. Our work directly adopts these
established models for state propagation.

Because of the incorporation of position state information
from both current and previous epochs, the system state vector
comprises two principal components: the INS error state vector
and the position error state vector from previous epochs, which
can be mathematically expressed as

ox = [6xins 5rpre ] (6)
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where 0rp. denotes the position error state vector from previ-
ous epochs, and dx;j,srepresents the INS error state vector at the
current epoch, comprising the position error 6r", velocity error
ov", attitude error ¢, gyroscope bias error 6b,, accelerometer
bias error 6b,. In addition, we introduce a scale factor error
0S. It is crucial to clarify that 6§ here does not refer to
the conventional scale factor errors of the IMU sensors (i.e.,
accelerometer or gyroscope). Instead, it represents the scale
factor error of the relative displacement increment provided
by LLIO-Net. A 1-D model is adopted for the scale factor
error to mitigate the estimation instability across three degrees
of freedom and to account for its manifestation as a slowly
varying bias under dynamic conditions [26]. The INS error
state vector 0xips can be expressed as

oxins = [ (6P (6v")" ¢ oby 5b] 5S ]. (7
The state transition equation characterizes the temporal evolu-
tion of the state vector. During the state transition phase, the

computation of historical position states is not necessitated.
The state transition equation can be formulated as

O0Xjj—1 = Dy p—10X_1 ®)

where @y ;_; is the state transition matrix from the (k — 1)th
epoch to the kth epoch, which is expressed as

D5 0356
063 I3

D5 01455
0151 exp (—f—;)

where ®;5 denotes the 15-D INS error state transition matrix,
as elaborated in [41]; At represents the temporal between
consecutive epochs, and 7g indicates the correlation time
of first-order Markov Process for scale factor error. The
covariance matrix transition equation represents the evolution
of system uncertainty characterization between consecutive
epochs, which can be mathematically formulated as

Priot = @1 Poi @y + D1 Qo Ty

Dy

(1)16 = (9)

(10)

where P denotes the covariance matrix of the system state; Q
represents the noise matrix characterizing system uncertainties.

When observations are accessible, the measurement equa-
tion can be established, which is mathematically expressed as

(1)

where z; represents the observation vector comprising the dif-
ference between predictions and observations; H; denotes the
measurement design matrix; v, characterizes the observation
noise. The measurement update equations for the system error
state and its associated covariance matrix can be formulated
as

zr = Hix + vy

-1
K = Py HY (HiPyjio HY + Ry)
% = R + K (2 — Hiektegmr)

P = (I - KeHo) Prgor (- KiH)' + KGROK 12)

where K denotes the Kalman gain matrix, and R represents
the observation noise covariance matrix characterizing mea-
surement uncertainties.
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It is imperative to emphasize that the measurement update
process of the filter is based on the correlation between
historical keyframe and the current keyframe. Consequently,
the preservation of historical keyframe states within the filter
is essential and is achieved through state cloning. Given that
the measurement equations are independent of velocity and
attitude, only the positional states corresponding to the current
position necessitate replication. The associated covariance
matrix for keyframe can be formulated as

Is Osx3 Ogx3 Is Osx3 Ogx3
P = | 0356 Iz 03 [P]| O3x6 I3 O3
A 03 I3 A 03 I3
A=[L0s]. (13)

B. Displacement Increments Update

The output of LLIO-Net is a relative displacement vector
over a period. This vector is derived from the raw IMU
output and projected from the b-frame to the n-frame using
the attitude obtained from INS mechanization, prior to being
input into the network model. Direct implementation of this
displacement increment as an observation would introduce
constraints on absolute heading information. Given that both
the prediction phase and observation update phase are depen-
dent on this attitude information, this would effectively result
in the filter using its self-generated absolute heading infor-
mation for self-correction. Consequently, when employing
this displacement increment as observational data, it becomes
imperative to mitigate the influence of absolute heading. This
article accomplishes this objective by transforming the dis-
placement increment from the n-frame to the local horizontal
gravity coordinate frame (n’-frame, denoted by the superscript
n’). The mathematical formulation for the observation update
equation pertaining to the displacement increment can be
expressed as

0Zdpos

= Zdpos — Zdpos

= C;aw (- Tpre ) =S - dpos,,

=Cl, (F 4+ 68" = =6, ) = (S + 65) - dpos,

= C;aw or" - CL, 6rly. —dpos, - 6S (14)

where Zgpos and Zapos represent the displacement increment
measurement vector and its corregponding prediction, respec-
tively; dpos, = [dp. dpy dp.], denotes the 3-D relative
displacement increment in the n’-frame generated by LLIO-
Net; Cyay represents the rotation matrix corresponding to the
heading angle; S indicates the scaling factor. Considering that
the relative displacement output by LLIO-Net demonstrates a
certain magnitude of scale error, it is essential to estimate the
scaling factor to mitigate its influence.

Meanwhile, LLIO-Net sporadically generates anomalous
displacement predictions in practical applications. Conse-
quently, this article employs the chi-squared test to evaluate
and eliminate these statistical outliers, which can be mathe-
matically expressed as

T n n
Cyaw (r - rpre ) - dPOS n'|HgDsp PHgoon +Raoss <a
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Hdpos = [CT

yaw

03 03 03 03 - deS n = Cz;ls ]
where Hypos denotes the design matrix of (14); Rypos T€presents
the covariance matrix of the displacement increment generated
by LLIO-Net; a is the critical value for the chi-squared test.
The critical value established in this article is fixed at 11.345,
corresponding to a confidence level of 99% for a chi-squared
distribution with three degrees of freedom. Furthermore, to
prevent filter divergence due to continuous rejection of all
displacement observations, if the detection metric is rejected
for three consecutive iterations, the current observation is
mandatorily accepted.

15)

C. MFM Positioning Update

In urban canyon environments, the magnetic field is sig-
nificantly distorted, generating distinctive characteristics that
facilitate high-precision pedestrian positioning through MFM.
However, in practical applications, due to factors such as
magnetic field similarity, extraneous signal interference, and
database precision constraints, real-time measurements may
inaccurately correlate with erroneous locations in the database,
resulting in significant positional discrepancies. Consequently,
exclusive dependence on MFM-derived positioning results
lacks requisite robustness, necessitating supplementary cali-
bration and integration methodologies.

Therefore, this article conceptualizes the positioning results
obtained from MFM as observations rather than definitive
positioning outcomes. Specifically, we integrate the MFM-
derived positions as observations for correction. The position
measurement equation can be mathematically expressed as

1

(Szr = f‘ms - i‘nMM =or" “+ BMEM (16)

where #, = [#, 7. | represents the horizontal position esti-
mated by INS; 7, = [7’" 7}] denotes the horizontal position
derived from MFM; nygy represents the measurement noise
associated with the position observations. The measurement
noise can be quantified using the gradient and residual error

of the MFS as follows:

(H'H)" ng

nVEM
YA M - M
J=0 "5 J
k
H=[H---H._]"

Ho— OM" (r;) OM" (r)) \ ar; (6
I on de /3

ny =

a7)

where M" denotes the magnetometer output transformed to
the n-frame; M”" represents the reference magnetic field vector
retrieved from the magnetic field fingerprint database in the n-
frame; (OM"(r))/0n and (OM"(r))/de represent the magnetic
field gradients in the northward and eastward directions,
respectively; (0r(€))/0€ signifies the partial derivative of the
absolute position with respect to translation and rotation. The
definitions of the magnetic field gradients and the partial
derivative of the absolute position are presented in [37].
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VI. EXPERIMENTS AND RESULTS
A. Experiments Descriptions

To validate the positioning performance of the proposed
pedestrian positioning method in urban canyon environments,
multiple field tests were conducted in the constructed magnetic
field fingerprint database. These tests were entirely conducted
in Area A, considering its adequate spatial extent, which incor-
porated representative GNSS-denied areas typical of urban
environment, including pedestrian walkways enclosed by high-
rise buildings and subterranean pedestrian passages. Although
Areas B and C exemplify typical urban environments, their
restricted spatial dimensions and relatively uniform envi-
ronmental characteristics inadequately represent the diverse
scenarios encountered in urban canyons. Area A incorporates
the environmental characteristics present in Areas B and C,
ensuring that experimental results obtained in Area A more
accurately reflect the algorithm’s positioning performance in
urban canyon environments.

The total length of the testing routes extended approxi-
mately 8.25 km. The test equipment comprised smartphones
and a foot-mounted module, with smartphones used for posi-
tioning test data collection, while the foot-mounted module
generated positional reference values through P-POS [38],
which achieves decimeter-level accuracy. Meanwhile, to evalu-
ate the generalizability of the proposed algorithm, two distinct
smartphones were employed for data collection (Huawei-
Mate40Pro and HonorMagic6). The experiment encompassed
12 tests for assessing the positioning performance of the
proposed method: tests 1-6 using the HuaweiMate40Pro, and
tests 7-12 employing the HonorMagic6.

Furthermore, to closely simulate diverse smartphone-
holding postures during pedestrian movement, participants
conducted tests with multiple smartphone-holding modes,
including stable handheld, swinging, and dynamic alternation
between stable handheld and swinging. The stable handheld
encompassed various modes such as flat-holding, calling, and
horizontal or vertical photography. Specifically, tests 1, 2, 7,
and 8 were executed under the stable flat-holding mode, while
the remaining tests implemented randomized holding modes
throughout the walking assessment. Each test was conducted
independently, ensuring trajectory uniqueness between succes-
sive tests; that is, participants walking within the experimental
area while implementing arbitrary smartphone-holding and
movement trajectories.

B. Positioning Performance

This section presents a comparative analysis of four distinct
positioning schemes to validate the feasibility and effec-
tiveness of the proposed method. The evaluated positioning
schemes include: 1) the Strapdown PDR algorithm developed
by Kuang, referred to as S-PDR [42]; 2) the PDR algorithm
based on LLIO-Net, referred to as Neural-PDR; 3) the MFM
using relative trajectory generated through S-PDR, which
implements MFM positioning results to mitigate S-PDR cumu-
lative errors, referred to as S-PDR/MFM [37]; and 4) the
positioning method proposed in this article, referred to as
Neural-PDR/MFM. The test trajectories consist of straight
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four tests. (a) Test 1, (b) Test 3, (¢) Test 7, and (d) Test 9.

lines and irregular curves, with pedestrians holding the smart-
phone in arbitrary modes during most test, demonstrating the
methodology’s adaptability to various pedestrians’ trajectories
without being influenced by the smartphone holding mode.
Fig. 7 illustrates the comparative trajectories of the reference,
S-PDR, Neural-PDR, S-PDR/MFM, and Neural-PDR/MFM
of tests 1, 3, 7, and 9, where red, yellow, purple, green,
and blue lines denote the reference, S-PDR, Neural-PDR,
S-PDR/MFM, and Neural-PDR/MFM trajectories, respec-
tively. Fig. 8 presents the cumulative distribution function
(cdf) analysis for S-PDR, Neural-PDR, S-PDR/MFM, and
Neural-PDR/MFM across these four tests. Tests 1 and 7
were conducted using Huawei and Honor smartphones under
the stable flat-holding mode, while tests 3 and 9 were
performed under variable smartphones-holding modes; the
remaining 8 test trajectories are similar. Analysis of the trajec-
tories reveals that those generated by S-PDR exhibit variable
scales and deformation errors across different tests. Notably,
S-PDR demonstrates inadequate performance in stair scenar-
ios, resulting in substantial scale errors in such environments.
In contrast, Neural-PDR exhibits relatively minor scale and
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Fig. 9. Error Curves for S-PDR, Neural-PDR, S-PDR/MFM, and Neural-
PDR/MFM in Test 1 and Test 7.

deformation errors compared to S-PDR, particularly demon-
strating superior performance with smaller scale errors in stair
environments.

Fig. 9 illustrates the error curves for tests 1 and 7, corre-
sponding to two datasets under stable flat-holding mode, and
indicates that in planar scenarios, Neural-PDR exhibits lower
positioning accuracy compared to S-PDR when the smart-
phone maintains a stable flat-holding posture. Neural-PDR
generally relies on extensive training data, and the variations
in stable flat-holding positions among different pedestrians can
be substantial. The training dataset may not encompass specific
pedestrian patterns, potentially leading to reduced positioning
performance across different pedestrians. Conversely, S-PDR
identifies the pedestrian’s smartphone flat-holding position
through predetermined criteria, ensuring stable estimation of
the mounting angle. This stability enables S-PDR to main-
tain more consistent performance across various pedestrians,
resulting in superior positioning accuracy. Nevertheless, both
Neural-PDR and S-PDR maintain a precise trajectory in pla-
nar scenarios under a stable flat smartphone-holding mode.
Consequently, S-PDR and Neural-PDR enable accurate MFS
generation under stable flat smartphone-holding mode in
planar scenarios. For example, during the initial trajectory
segments, where pedestrians traversed planar environments,
the positioning accuracy of S-PDR/MFM demonstrates equiv-
alence to Neural-PDR/MFM, both achieving high precision
levels. However, upon transitioning to stair environments,
the significant scale errors in S-PDR result in substantial
inaccuracies in the generated MFS, thereby compromising the
achievement of precise MFM results.

Meanwhile, during transitions in smartphone-holding
modes, S-PDR may fail to accurately estimate the angu-
lar difference between smartphone orientation and pedestrian
movement direction, resulting in sudden directional shifts
and subsequent trajectory distortions. Fig. 10 illustrates the
error curves for tests 3 and 9, which demonstrate that
during alterations in pedestrian smartphone-holding modes,
S-PDR exhibits significant shape deformations, generating
errors that preclude the production of reliable shape MFS,
thus preventing effective  MFM. Conversely, Neural-PDR
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TABLE 11
RMS, 68 % AND 95 % OF THE POSITION ERRORS OF S-PDR, NEURAL-PDR, MFM/S-PDR, AND MFM/NEURAL-PDR IN 12 TESTS
- S-PDR (m) Neural-PDR (m) MFM/S-PDR (m) MFMN&‘; al-PDR 1. ctance
RMS 68% 95% RMS 68% 95% RMS  68% 95% RMS 68% 95% (m)
1 2586 3144 4396 5558 55.16 9093 3693 46.71 6196 3.10 266 7.59 648.46
2 33.61 32,55 6995 29.85 3021 5528 13.04 3.95 29.80 215 1.81 420 82547
3 105.20 122.07 15231 2092 2526 32.14 3728 4995 6028 290 3.83 531 697.44
4 161.54 180.25 26443 2650 2798 5227 1260 11.61 2431 4.60 439 890 716.83
5 15.78 17.69 2393 2692 3035 5146 27.65 28.83 54.60 389 422 655 662.57
6 123.76  151.37 172.57 1037 11.06 17.77 1548 19.14 2845 3.33 339 6.21 659.51
7 2340 29.74 4561 13.05 11.63 2573 2634 26.05 5509 210 196 447 704.83
8 75.33  82.17 112.54 7471 87.28 101.07 19.97 14.04 4792 195 194 395 613.72
9 104.96 12425 169.53 37.89 42.16 5645 6254 7237 11625 3.26 335 579 761.32
10 107.5 12296 192.28 37.87 4550 5576 84.06 10641 12484 291 330 5.01 65387
11 88.6 69.68 210.52 18.04 20.00 2452 4626 5478 63.65 251 257 450 607.71
12 91.83 102.00 162.82 2498 2790 5046 7751 93.02 111.54 310 320 546 674.21
Mean 79.78 88.85 135.04 3139 3454 51.15 3831 43091 6489 298 305 566 685.50
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Fig. 10. Error curves for S-PDR, Neural-PDR, S-PDR/MFM, and Neural-
PDR/MFM in Test 3 and Test 9.

demonstrates superior adaptability to varying smartphone-
holding modes, maintaining trajectory shape accuracy despite
changes in smartphone-holding modes. Furthermore, Neural-
PDR exhibits enhanced performance in stair environments,
producing minimal scale errors. Consequently, Neural-PDR
consistently generates high-quality MFS, facilitating precise
and reliable MFM positioning.

The statistical analysis of the root mean square (rms),
68% and 95% of the position errors from the 12 tests are
summarized in Table II. The mean position errors of rms,
68% and 95% for S-PDR are 79.78, 88.85, and 135.04 m;
for Neural-PDR, 31.39, 34.54, and 51.15 m; for S-PDR/MFM,
38.31, 43.91, and 64.89 m; and for Neural-PDR/MFM, 2.98,
3.05, and 5.66 m. Although the relative trajectories generated
by Neural-PDR demonstrate heading and scale errors, they
effectively facilitate the implementation of MFM. Meanwhile,
the statistical results indicate negligible performance variations
between these two smartphones, substantiating the universal
applicability and device-independent characteristics of the
proposed method.

Fig. 11. Trajectories of the reference truth, GNSS chips, and proposed Neural-
PDR/MFM for four independent tests. (a) Test I. (b) Test II. (c) Test III. (d)
Test IV. Note: The trajectories in (a)—(d) are from four distinct experimental
runs.

Overall, within the proposed positioning framework,
Neural-PDR demonstrates superior MFS accuracy in stair
environments, consequently achieving enhanced MFM preci-
sion. Additionally, during complex smartphone-holding modes
transitions, S-PDR encounters mounting angle estimation
difficulties, resulting in trajectory distortions. Neural-PDR,
however, uses the displacement increment generated by LLIO-
Net, circumventing mounting angle estimation challenges
and achieving enhanced trajectory precision. Meanwhile, to
quantitatively demonstrate the superiority of the proposed
Neural-PDR/MFM algorithm, an accuracy improvement analy-
sis was conducted. The improvement metrics were calculated
by comparing the rms of positioning errors across different
methods. The analytical results indicate that the proposed
Neural-PDR/MFM method achieves a 90.51% improvement in
positioning accuracy compared to Neural-PDR, and a 92.22%
enhancement relative to S-PDR/MFM.

Furthermore, to validate the efficacy of the proposed method
in smartphone positioning, a comprehensive comparative anal-
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TABLE III

RELATIVE ERROR PERCENTAGE OF THE PROPOSED METHOD
ACROSS VARIOUS SMARTPHONE-HOLDING MODES

Test Hold-1 Swing-1 Hold-2 Swing-2
(%) (%) (%) (%)
1 0.515 0.929 0.592 1.055
2 0.450 0.875 0.571 1.063
3 0.446 0.94 0.669 0.929
Mean 0.471 0.915 0.611 1.016

ysis was conducted between positioning results obtained from
built-in GNSS chips and the proposed method. Fig. 11 presents
comparative trajectories from four experimental tests. The
analysis demonstrates that in urban canyon environments,
smartphone GNSS chip outputs exhibit significant positioning
errors, typically ranging from 5 to 10 m, with maximum errors
reaching approximately 20 m in specific locations. Notably,
in complex environments with GNSS signal obstruction, such
as underground pedestrian passages, smartphone GNSS chips
cease to provide positioning outputs entirely, highlighting
their environmental limitations. In contrast, the proposed
method maintains consistent and reliable positioning capabil-
ities throughout these evaluation zones, achieving markedly
improved accuracy compared to GNSS chip outputs. Thus,
the proposed method offers enhanced positioning performance
for smartphone users, particularly in challenging environments
where GNSS signals are compromised.

C. Performance Analysis and Influencing Factors

This section analyzes the factors affecting the positioning
performance of the Neural-PDR/MFM method through the
ablation experiments. We will explore the influences on the
proposed method from the perspectives of Neural-PDR and
MFM. From the Neural-PDR perspective, the primary factor
impacting performance is the mode in which pedestrians
hold their smartphones. The modes of smartphone holding
can be categorized into the following types: stable handheld,
swinging, transitions between stable handheld modes, and
transitions between handheld and swinging. By testing the
positioning errors of the proposed algorithm on flat ground
under these four smartphone-holding modes, we aim to ana-
lyze the impact of different smartphone modes on positioning
performance. The data collect scheme for these four modes
is as follows: walking randomly while holding the phone flat,
referred to as “Hold-1"; walking while holding the phone in
a swinging mode, referred to as “Swing-1"; walking while
holding the phone steadily, but switching between various
modes, including flat holding, calling, and horizontal and
vertical photography, referred to as “Hold-2”; walking while
switching between handheld and swinging modes, referred to
as “Swing-2.” Three sets of data are collected for each mode,
with each route approximately 300 m.

Because of the varying lengths of data collected across
these four modes, it is necessary to use the relative error
percentage to evaluate the accuracy for each mode. Table III
presents the statistical values of the relative error percentage
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Fig. 12. Trajectories of the reference truth and proposed Neural-PDR/MFM
across four smartphone-holding modes (a) Hand-1, (b) Swing-1, (c) Hand-2,
and (d) Swing-2.
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Fig. 13. CDF of reference and Neural-PDR/MFM across four smartphone-
holding modes (a) Hand-1, (b) Swing-1, (c) Hand-2, and (d) Swing-2.

of the proposed method across various smartphone-holding
modes. The trajectories of four tests of the reference and
Neural-PDR/MFM across four smartphone-holding modes are
shown in Fig. 12. Fig. 13 presents the corresponding cdf
curve for Neural-PDR/MFM. The results indicate that the
error is minimal when the phone is held flat. When there
are transitions in smartphone modes, the instability of the
smartphone’s orientation relative to the pedestrian leads to a
decline in positioning performance. The error in the swinging
state is slightly larger than that in the stable handheld state, yet
the positioning accuracy remains sufficient for the positioning
needs of pedestrians. Overall, the proposed algorithm demon-
strates a strong adaptability to the positioning requirements of
pedestrians across various smartphone holding modes.

From the MFM perspective, the main parameters influenc-
ing MFM positioning performance include the resolution of
the magnetic field map, length, deformation error, and scale
error of the MFS. The resolution of the magnetic field map
refers to the grid length of the map, which is set to 0.3 m in
this article. The deformation error of the MFS primarily refers
to the handing drift error of the PDR, while the scale error
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Fig. 14. Mean rms of the position errors of MFM using different lengths of
MEFS across the 12 tests.

arises from the step length of the PDR. The effects of these
three parameters on MFM have been discussed in [37]. While
the impact of MFS length has also been examined in [43] for
indoor environments, the distinct magnetic characteristics of
urban canyons necessitate a dedicated analysis.

To determine a suitable MFS length for this environment,
we conducted an ablation study, with results shown in Fig. 14.
The figure illustrates the mean rms positioning errors for MFS
lengths ranging from 15 to 40 steps across all 12 tests. The
positioning error initially decreases and then increases, with
the minimum error achieved at a length of 30 steps. This trend
has a clear physical interpretation. A short MFS (e.g., 15 steps)
lacks sufficient length to capture a unique magnetic signature,
leading to ambiguity in matching. Conversely, an excessively
long MFS (e.g., 40 steps) is more susceptible to accumulated
PDR drift, which distorts the sequence shape and degrades
matching accuracy. Furthermore, it may contain redundant
information that obscures the primary features.

Therefore, an MFS length of 30 steps (approximately 21
m, assuming an average step length of 0.7 m) was selected,
as it strikes an optimal balance between capturing distinctive
magnetic features and mitigating the impact of PDR’s cumu-
lative errors. This optimal value is derived from our specific
test environments and may vary in other urban canyons with
different magnetic field characteristics (e.g., different density
or scale of anomalies). However, for the scope of this study,
our analysis provides a well-reasoned justification for selecting
30 steps as a robust and effective parameter.

Simultaneously, due to the incorporation of deep learning
models in this study, the computational complexity is compar-
atively high. Therefore, it is imperative to discuss whether the
computational efficiency of the proposed algorithm fulfills the
requirements for pedestrians whose positioning terminals are
mobile devices. The computational efficiency of the algorithm
was assessed using 12 tests, comparing the average execution
times of S-PDR/MFM and Neural-PDR/MFM. The experiment
used a computer with a 16-core CPU (11th Gen Intel Core
17-11700 @ 2.50 GHz 16) for processing experimental data.
The average duration for each of the 12 tests was 712.62 s,
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with an average execution time of 2.087 s for S-PDR/MFM
and 5.181 s for Neural-PDR/MFM. The algorithm proposed
in this article incurs approximately a twofold increase in
time expenditure compared to S-PDR/MFM. However, it still
achieves a real-time factor of 137 times (i.e., 712.62/5.181 s).

Mobile devices are less powerful than their desktop coun-
terparts. However, this significant performance margin of 137
times provides a strong buffer, suggesting that the algorithm
would maintain real-time capability even on hardware that
is an order of magnitude slower. Furthermore, for practi-
cal on-device deployment, the model can be significantly
optimized using standard industry techniques such as model
quantization (e.g., converting weights to 8-bit integers) and
deployment via mobile-native inference engines like Tensor-
Flow Lite or Core ML, which leverage hardware accelerators
(NPUs/GPUs). These optimizations are known to yield dra-
matic speedups. Therefore, the combination of the large initial
performance margin and the potential for established opti-
mization techniques provides compelling evidence that the
proposed algorithm is feasible for real-time positioning on
contemporary mobile devices.

VII. CONCLUSION AND FUTURE WORK

This article presents a meter-level pedestrian positioning
solution integrating INS, LLIO-Net, and MFM, specifically
designed for smartphone positioning in urban canyon envi-
ronments where GNSS signals are severely obstructed and
disturbed. The spatial distribution of MFFs in urban canyon
environments is analyzed initially, demonstrating sufficient
positional resolution for effective positioning. Subsequently, a
comprehensive pedestrian positioning algorithm is developed.
Considering the diversity of smartphone-holding modes among
pedestrians and the presence of staircases in urban canyons,
learned inertial odometry is implemented instead of conven-
tional PDR to enhance MFM. Specifically, the positioning
accuracy and reliability of MFM are substantially improved
by using the relative displacement increments generated by
LLIO-Net to produce more precise MFS. Moreover, given the
limitations of EKF in processing historical state information,
MSCKF is employed to integrate the relative displacement
increments and MFM positioning results, thereby establishing
a robust pedestrian positioning solution optimized for urban
canyon environments. Experimental results demonstrate that
the proposed method effectively meets pedestrian positioning
requirements in urban canyons, achieving a positioning error
of 2.98 m (rms). Compared to the S-PDR/MFM approach, the
proposed method exhibits superior adaptability across various
application scenarios, demonstrating a substantial improve-
ment in positioning accuracy of 92.22%.

The proposed method effectively addresses the pedes-
trian positioning requirements in urban canyon environments,
demonstrating reliability, cost-effectiveness, and scalability.
Nevertheless, certain limitations necessitate further investi-
gation. The method’s performance degrades in areas where
distinctive magnetic features are either naturally absent or have
become outdated due to long-term environmental changes. To
address these challenges, future work should focus on two
key directions. First, developing adaptive strategies, such as
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crowdsourced database maintenance, is crucial for ensuring the
long-term validity of the fingerprint map. Second, to enhance
overall robustness and continuity, fusing the magnetic field
data with other available signals—such as partially available
GNSS, Wi-Fi, or visual landmarks—is a promising path. Such
a hybrid system would intelligently leverage multiple data
sources to ensure reliable positioning across a wider range
of conditions.
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