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Abstract—Location-based services (LBS) have become an inte-
gral part of daily life and work for the general public. However,
achieving widespread and accurate positioning in typical indoor
environments remains a significant challenge, particularly in
multi-floor indoor parking lots where radio frequency signals
like WiFi are often unavailable. Indoor magnetic matching
presents a viable solution, but it requires reducing mapping
costs through the use of crowdsourced data. To tackle this issue,
we propose an innovative method for constructing magnetic
maps using crowdsourced vehicle data. Our approach introduces
a multi-user joint vehicle dead reckoning technique based on
graph optimization, which provides consistent directional esti-
mates of crowdsourced vehicle trajectories. Subsequently, we
establish associations between different vehicle trajectories using
multi-attribute features of the magnetic field. Building on this
foundation, we propose a global trajectory optimization with
inequality and equality constraints to achieve precise estimation
of crowdsourced vehicle trajectories. Testing with simulated data
from two three-floor underground parking lots demonstrates
that the proposed method, utilizing only on-board smartphone
sensor data, achieves plane and elevation errors of less than
2.75 meters (95%) and 0.59 meters (95%), respectively. Addi-
tionally, the magnetic matching positioning error based on
crowdsourced magnetic sequence maps is less than 2.29 meters
(95%).

Index Terms—Crowdsource, magnetic map, keyframe associa-
tion, vehicle navigation, indoor positioning.
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I. INTRODUCTION

VEHICLE localization using smartphones is a vital com-
ponent of consumer-grade positioning, forming the

backbone of location-based services, big data applications,
and the Internet of Things [1], [2]. While the widespread
use of GNSS (Global Navigation Satellite System) enables
smartphones to achieve meter-level positioning in outdoor
open environments, which generally meets application require-
ments, there remains a lack of universally applicable methods
for vehicle localization in typical indoor environment [3], [4],
such as underground parking lots.

In indoor environments, smartphone localization methods
encompass a variety of technologies, including Camera [5],
[6], WiFi [7], [8], [9], Bluetooth Low Energy (BLE) [10],
magnetic fields [11], [12], Ultra-Wideband (UWB) [13], [14],
and Inertial Measurement Unit (IMU) [15], [16]. Among these,
the IMU can only provide relative trajectories and is typically
used as a foundation for integrating other positioning informa-
tion to enhance overall accuracy [17], [18], [19]. UWB-based
positioning has been improved by recent advancements in
outlier detection [20], achieving decimeter-level precision in
specific applications. However, its dependence on base station
deployment and the lack of UWB reception in consumer
devices limit its widespread applicability. Conversely, BLE-
based positioning, augmented by deep learning techniques
[21], [22] and particle swarm optimization [23], demon-
strates high accuracy in certain environments. Although it
utilizes existing smartphone hardware, this approach requires
additional BLE base stations, which hinders its scalability
as a universal positioning solution. WiFi-based positioning
can achieve good accuracy in environments like shopping
malls, but in settings such as indoor parking lots, WiFi base
stations are often either absent or deployed too sparsely to
provide reliable positioning. Vision-based and magnetic field-
based positioning technologies rely solely on the building’s
infrastructure and can achieve very high accuracy.

Technologies like Vision and Magnetic Fields do not rely on
infrastructure construction but do depend on pre-built signal
fingerprint maps. To facilitate the widespread application of
indoor positioning, the development of signal fingerprint maps
using crowdsourced data has been proposed. Research into
building signal fingerprint maps based on crowdsourced data
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for Vision has already garnered significant attention. In indoor
environments, the high measurement accuracy of Vision tech-
nology enables mapping and positioning to achieve meter-level
precision [24], [25]. However, for mass consumer applications
on smartphones, the computational complexity of visual posi-
tioning remains prohibitively high, posing challenges for its
widespread adoption.

Due to their relatively lower computational demands,
magnetic field-based methods have found some applica-
tion in indoor positioning. However, research on con-
structing crowdsourced magnetic field maps has primarily
focused on approaches utilizing pedestrian crowdsourced data.
Luo et al. [26] and Ayanoglu et al. [27] address indoor office
scenarios by modeling pedestrian trajectories as compositions
of straight lines and corners. They correlate different trajec-
tories based on these features to reconstruct user paths and
magnetic field maps. Kwak et al. [28] enhances this approach
by incorporating motion distance information, which helps
reduce the computational burden associated with magnetic
sequence matching using Dynamic Time Warping. Crowd-
MagMap [29] further advances these methods by relaxing
assumptions about crowdsourced data. It addresses real-world
challenges such as pedestrian free movement, random smart-
phone holding postures, and short trajectory lengths, and
presents a method for reconstructing magnetic field maps
of single-floor scenes using pedestrian crowdsourced data.
However, for services such as indoor vehicle positioning and
parking navigation, it is necessary to construct a magnetic
field map of a multi-story indoor parking lot. The methods
previously employed typically lack cross-floor data in the
pedestrian crowdsourced data, which limits their ability to
meet this requirement.

This paper focuses on how to construct magnetic field maps
of multi-storey parking lots using passive crowdsourced data
from smartphones and addresses the following two challenges:
1) The typical accuracy of smartphone built-in sensors is low,
and there is a lack of widely available high-reliability absolute
positioning methods in indoor scenarios, which makes it diffi-
cult to restore accurate, smooth and heading-correct vehicle
trajectories. 2) The magnetic field map of a multi-storey
parking lot requires the reconstruction of the three-dimensional
shape of the vehicle trajectory, which is significantly different
from the existing magnetic map construction task based on
pedestrian crowdsourced data and is more complex. The main
contributions of this work are summarized as follows:
• We propose a novel algorithm to generate magnetic field

maps of indoor multi-storey parking lots using crowd-
sourced data from smartphones with embedded inertial
measurement units (IMUs) and magnetometers. Based on
a graph optimization algorithm framework, the proposed
algorithm integrates IMU measurements, vehicle motion
models, and magnetic field information without relying
on prior knowledge of smartphone mounting angles, lever
arm configurations, or magnetometer pre-calibration. To
the best of our knowledge, this is the first method
designed specifically for this challenging task.

• We propose an optimization algorithm that jointly esti-
mates the global pose and performs floor clustering.

Through multiple iterations of floor clustering and global
trajectory optimization, the proposed method can accu-
rately recover the global 3D magnetic field sequence
map even in the presence of significant errors in vehicle
elevation estimation in crowdsourced data.

• We validate the feasibility of the proposed algorithm
using simulated crowdsourced data from two typical
three-storey indoor parking lots and demonstrate that the
crowdsourced magnetic field map can support meter-level
vehicle indoor positioning.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of the proposed method. Section III
describes the multi-user joint vehicle dead reckoning. Sec-
tion IV describes the global trajectory optimization method.
Section V uses field tests to evaluate the proposed method.

II. SYSTEM OVERVIEW

The concept of crowdsourced magnetic field mapping
involves delegating the demanding task of data collection
to everyday users. By analyzing the sensor readings from
smartphones carried by these users, we can reconstruct indoor
magnetic field maps, achieving this at a low cost. However,
the challenge lies in the fact that sensor data are collected
as users move naturally and dynamically, with their positions
unknown, and the data from any single user is typically brief.
Thus, the key to successful crowdsourced magnetic mapping
is accurately determining users’ actual movement trajectories
and establishing spatial correlations between different users.

Figure 1 illustrates the algorithmic flow of the pro-
posed method, which comprises three main components:
Trajectory Estimation, Trajectory Association, and Global
Trajectory Optimization. Trajectory Estimation utilizes smart-
phone sensor observations to estimate the motion trajectories
of various vehicles, transforming these observations into
spatial information. By leveraging the estimated vehicle tra-
jectories and magnetic field features, Trajectory Association
identifies spatial associations between different vehicle tra-
jectories, pinpointing moments when different vehicles pass
the same location. Global Trajectory Optimization integrates
the estimated vehicle trajectories with the spatial association
information to achieve a globally optimal estimation of the
relative trajectories among all vehicles.

In Trajectory Estimation, a filter-based vehicle dead reck-
oning (VDR) method is employed to seamlessly integrate
sensor observations with vehicle motion constraints in real
time. This filter-based VDR is capable of adaptively detect-
ing the vehicle’s motion state and estimating the positional
relationship between the smartphone and the vehicle, thereby
providing a more precise initial value for trajectory estimation
during data post-processing [30]. The multi-user joint VDR
framework is built upon a graph optimization algorithm archi-
tecture. It effectively integrates incremental motion constraints
and ensures global consistency by incorporating magnetic
vector observations from different vehicles within the same
spatial environment. This approach enhances the precision and
reliability of vehicle trajectory estimates by leveraging data
from multiple users.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Wuhan University. Downloaded on September 23,2025 at 14:47:34 UTC from IEEE Xplore.  Restrictions apply. 



KUANG et al.: CrowdMagMap 2.0: CROWDSOURCED MAGNETIC MAPPING 3

Fig. 1. System framework of the proposed crowdsourced magnetic field mapping method. The orange background part is the main contribution of this
algorithm.

In the Trajectory Association, the vehicle trajectories are
divided into segments (i.e. keyframes) of 20 meters in length.
The observed magnetic features are then resampled based on
spatial distance. Building on this foundation, magnetic features
in the frequency domain are employed for the coarse matching
of keyframe pairs, enhancing the efficiency of the trajectory
association algorithm. Subsequently, magnetic features in the
time domain are utilized for the fine matching of keyframe
pairs. To ensure the accuracy of the trajectory association
algorithm, the geometric similarity of keyframe pairs is used
for verification. Further details of this algorithm are available
in our published paper [29].

In the Global Trajectory Optimization, inequality constraint
optimization leverages the relative pose and initial position
and heading provided by VDR to represent a single trajectory.
This approach significantly reduces the number of parameters
that need optimization, thereby facilitating rapid screening
and verification of associated keyframe pair information and
ensuring both efficiency and reliability in solving constraint
problems. Building on this, equality constraint optimization
utilizes the original observations from the IMU to mitigate
any accuracy loss that might occur from relying solely on
the relative pose output by VDR. Through multiple iterations,
this method defines the optimization problem to achieve global
trajectory optimization.

In summary, the core algorithms of the proposed method
are multi-user joint VDR and global trajectory optimization.
These algorithms are crucial in assessing the feasibility of
the method. Consequently, the subsequent sections of the
paper will concentrate on these two algorithms, exploring their

implementation, effectiveness, and role in the overall trajectory
association and optimization framework.

III. MULTI-USER JOINT VEHICLE DEAD RECKONING

In indoor environments, accurately estimating vehicle trajec-
tories using only the smartphone’s built-in IMU can be quite
challenging without prior signal base stations and positioning
fingerprint maps. This difficulty arises because smartphone
IMUs typically have limited performance, leading to position
errors that can reach meter-level inaccuracies within just
a few seconds. To tackle this issue, we propose a multi-
user joint vehicle dead reckoning post-processing method.
The core concept involves constructing virtual observations
using vehicle motion information to effectively reduce the
position error of the Inertial Navigation System (INS). This
includes employing Zero-velocity UPdate Technology (ZUPT)
and Non-Holonomic Constraint (NHC). ZUPT constrains the
velocity of the INS to zero when the vehicle is stationary,
while NHC applies when the vehicle is in motion, ensuring
that the lateral and vertical velocities in the vehicle frame are
zero. Additionally, the algorithm leverages the consistency of
the average magnetic field vector across all vehicle trajectories
within the same indoor space to ensure they are roughly
aligned in terms of heading. Finally, graph optimization is
utilized to integrate these constraints, resulting in a smoother,
more accurate, and heading-aligned vehicle trajectory estima-
tion. In this step, the automatic estimation of magnetometer
bias is achieved by applying absolute and relative magnetic
field constraints. This method addresses the issue of incon-
sistent magnetometer readings at the same location, which are
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caused by different smartphones and their installation positions
on the vehicle.

The system state is defined as:

X = {tk
ni
, vk

ni
,Rk

nbi
, bk

a, b
k
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k
m,R

k
vb, t

k
vb,Mn} (1)

where tk
ni

, vk
ni

, and Rk
nbi

represent the position, velocity, and
rotation of the k-th trajectory in the i-th navigation frame
(n-frame), respectively, Rk

vb and tk
vb represent the rotation and

translation from the sensor frame (b-frame) to the vehicle
frame (v-frame), bk

a, bk
g, and bk

m represent the accelerometer,
gyroscope, and magnetometer bias, respectively, Mn represents
the magnetic field vector in the n-frame.

The graph optimization problem of system state estimation
is defined as:

X = argmin
X

X
ek + ‖rE (Mn)‖Σ2

E
(2)

where rE(Mn) represents the east component of the constraint
on the global average magnetic field. This constraint assumes
that the east component follows a zero-mean Gaussian dis-
tribution, which is essential for ensuring the observability of
both the global heading and the global magnetic field vector.
It implies that we assume the average magnetic field vector
aligns with the local geomagnetic field. ek defines the cost
function used for each trajectory, which is defined as follows:

ek =
X
‖rpre ‖

2
Σpre

+
X
‖rNHC ‖

2
ΣNHC

+
X
‖rZUPT ‖

2
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+
X
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+
X
‖r∆Mn

‖2Σ∆Mn
(3)

where rpre represents the relative pose and velocity constraints
between consecutive keyframes, which are obtained using
IMU pre-integration, with specific forms as detailed in [31].

The NHC approach constructs lateral and vertical zero
velocity constraints based on the assumption that a vehicle will
not skid or jump during normal driving. However, vehicles
often experience varying degrees of vibration due to road
irregularities, which can cause the velocity to occasionally
violate the NHC assumption. To address this, displacement
constraints are derived by integrating the lateral and vertical
velocities to mitigate the impact of the vehicle passing over
shock-absorbing facilities, whether moving laterally or verti-
cally. In the graph optimization algorithm, the relative posture
and velocity obtained through pre-integration are used to
generate short-term predictions of relative lateral and vertical
displacements in the vehicle’s frame of reference, known as
the v-frame. The lateral and longitudinal zero displacement
constraints in the v-frame is defined as follows:

rNHC = A
kX

j=1

Rvb

h
RT

nbi+ j
vni+ j+(ωb

nbi+ j
×)tT

vb

i
∆T j−[0, 0]T (4)

A =

�
0 1 0
0 0 1

�
(5)

where Rvb and tvb represent the rotation and translation from
the sensor frame (b-frame) to the v-frame, Rnbt+i and vnt+i

represent the rotation and velocity of the i-th epoch after
the t-th keyframe, ωb

nb represents the angular rate output by

the gyroscope, ∆Ti represents the time interval between two
adjacent epochs. The rotation and velocity at time k + i are
estimated using pre-integration as follows:

Rnbi+ j = Rnbi Rbibi+ j (6)
vnbi+ j = vni + Rnbi vbibi+ j + gn∆Ti,i+ j (7)

where Rbibi+ j , vbibi+ j , and ∆Ti,i+ j representing the rotation
increment, velocity increment, and the time length from the
i-th to the (i+ j)-th epoch, respectively. It is worth noting that
both the mounting angle and the lever arm are variables to be
estimated in the residual rNHC . These parameters are highly
observable and can be accurately estimated when there is a
change in direction of the vehicle motion.

Similarly, when the vehicle is detected to be stationary,
the zero displacement constraint is used instead of ZUPT to
improve the positioning accuracy. The construction of zero
displacement constraints in the n-frame is defined as follows:

rZUPT =

kX
j=1

vni+ j∆T j − [0, 0, 0]T (8)

The magnetic field provides crucial absolute heading infor-
mation, significantly enhancing trajectory estimation accuracy
in multi-user joint VDR post-processing algorithms. However,
the vehicle’s structure can be a major source of magnetic
interference, and indoor environments often present frequent
and substantial magnetic disturbances, posing significant chal-
lenges to the effective utilization of magnetic fields. In this
context, we assume that the smartphone is securely mounted
at a specific location within the vehicle. The magnetic inter-
ference from the vehicle’s structure introduces a relatively
stable bias in the magnetometer’s readings. We treat this
stable bias, combined with the inherent magnetometer bias,
as a parameter to be estimated and subsequently eliminated.
To address magnetic interference from building structures,
we adopt the approach outlined in previous research [31],
modeling it as a magnetic field whose errors follow a zero-
mean Gaussian white noise distribution. Given that individual
user trajectories are typically brief (e.g., around 2 minutes),
we integrate the trajectories of all users along with their corre-
sponding magnetic field observations to apply these corrective
measures. The constraints for absolute and relative magnetic
fields are defined as follows:

rMn
= Rnbi Mbi − Mn (9)

r∆Mn
= Rnbi Mbi − Rnb j Mb j (10)

Mbi =
1
N

NX
s

Rbibi+s (Mbi+s − bm) (11)

where rMn
represents the absolute magnetic field constraint,

which is related to the attitude and magnetometer bias of all
trajectories and the global magnetic field. Since the vehicle
trajectories typically cover large areas, this constraint enforces
approximate heading alignment among all trajectories. This
property arises because large-area magnetic field measure-
ments naturally suppress heading drift, even in areas with
significant magnetic field disturbances, as demonstrated in
prior work [31]. r∆Mn

represents the relative magnetic field
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constraint, which is related to the attitude and magnetometer
bias of a single trajectory. Since the sensor rotates about two
different axes, effectively simulating the magnetometer bias
error in the trajectory, this constraint can effectively achieve
accurate estimation of the magnetometer bias by exploiting the
short-term consistency of the magnetic field.

To prevent convergence to local minima, we employ a
Kalman filter-based vehicle dead reckoning method to estimate
the vehicle’s initial trajectory. Building on this foundation,
solving (2) yields a smooth three-dimensional vehicle trajec-
tory. The optimization algorithm leverages the global average
magnetic field constraint measured along each trajectory to
roughly align the headings of all trajectories. Additionally, the
cost function incorporates both absolute and relative magnetic
field constraints to ensure the precise estimation of magne-
tometer bias. This accuracy is crucial for utilizing the magnetic
field sequence associated with all trajectories for keyframe
association.

IV. GLOBAL TRAJECTORY OPTIMIZATION

Due to the performance limitations of the built-in IMU
in smartphones, the 3D vehicle trajectory produced by
VDR is prone to significant positional errors. To address
this, we employ a global trajectory optimization approach
that integrates both inequality and equality constraints in a
tightly-coupled manner, akin to the crowdsourced pedestrian
trajectory estimation method described in [29]. In the inequal-
ity constraint optimization phase, we estimate only the initial
3D position and heading of each trajectory. We leverage the
heading information derived from the global average mag-
netic field vector to provide an initial pose and a keyframe
association correctness marker, which remain unaffected by
any keyframe association errors. During the equality constraint
optimization phase, we utilize the original IMU observations to
impose constraints, thereby preventing the loss of information
that might occur if we were to rely solely on the relative poses
between keyframes as output by VDR.

A. Inequality Constraint Optimization

Even with constraints based on the average magnetic field,
the headings of crowdsourced trajectories estimated using
VDR still exhibit varying degrees of inconsistency. Moreover,
due to the limited number of trajectories and the strong corre-
lation between magnetic field perturbations and specific spatial
regions, modeling the heading error as Gaussian noise proves
to be less effective. To address this, we employ inequality
constraints derived from magnetic field heading information to
account for variations in magnetic heading caused by differing
magnetic field perturbations across the regions traversed by
each trajectory.

The three-dimensional trajectory optimization problem,
incorporating inequality constraints, is defined as follows:

{tk, ψk} = argmin
tk ,ψk

X
ρCauchy(‖rDis‖Σ2

Dis
)

s.t.ψk
low < ψ

k < ψk
upper (12)

where pk and ψk represent the trajectory three-dimensional
position and heading in the n-frame, ψk

low and ψk
upper are the

boundaries of heading fluctuations, which are empirically set
to ±20◦.

ρCauchy(s) = log (1 + s) (13)

The Cauchy kernel function exhibits a smaller gradient for
larger residuals compared to the Huber kernel function. This
characteristic implies that the optimization process utilizing
the Cauchy kernel function is less prone to errors arising
from incorrect keyframe associations. To reduce the dimen-
sionality of the system state that needs to be estimated, and
consequently decrease the computational burden, we represent
all keyframes of the trajectory using the pose of the initial
keyframe along with the relative poses provided by the VDR.
The cost function, denoted as rDis, imposes a constraint on the
three-dimensional distance between two keyframes:

rDis =
�
R
�
ψk

0

�
tk,p
n + tk

n0

�
−
�
R(ψl

0)tl,q
n + tl

n0

�
(14)

R (ψ0) =

24cosψ0 −sinψ0 0
sinψ0 cosψ0 0

0 0 1

35 (15)

where tk
n0

and ψk
0 represent the translation and rotation angle

of the k-th trajectory, respectively, tk,p
n represents the position

of the p-th keyframe of the k-th trajectory.
The problem is addressed iteratively using the Levenberg-

Marquardt (LM) algorithm, as detailed in the foundational
works by Levenberg [32] and Marquardt [33]. Once (12) is
solved, the algorithm updates the pose and velocity of each
keyframe in the trajectory with the following equations:

Rk
nbi

= R(ψk)Rk
nbi

(16)

tk
ni

= R(ψk)tk
ni
+ tk

n0
(17)

vk
ni

= R(ψk)vk
ni

(18)

B. Equality Constraint Optimization

Inequality constraint optimization is used to determine the
initial pose of each trajectory and to verify the accuracy of
keyframe associations. Building on this foundation, a tightly
coupled optimization process refines the trajectory estimates
by leveraging constraints from the IMU within a trajectory,
loop closure detection across multiple trajectories, and clus-
tering of elevation constraints for the same floor. Given the
low accuracy of VDR in estimating elevation, this method
employs the consistent height of vehicles on the same floor
to formulate elevation constraints. The global optimization
problem is defined as follows:

X = argmin
X
{ek+ ‖ rtLC ‖

2
ΣtLC

+ ‖ rmLC ‖
2
ΣmLC

+ ‖ r f loor ‖
2
Σ f loor

+ ‖ rE(Mn) ‖2ΣE
} (19)

where ek represents the constraints within each trajectory,
as defined in Eq. (3), rE(Mn) represents the east component
constraint of the global average magnetic field, which ensures
the observability of the global heading and magnetic field
vector.
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rtLC represents the position revisit constraint (i.e. loop
closure) between keyframes, which is defined as:

rtLC = (Rk,p
nb tk

b + tk,p
n ) − (Rl,q

nbtl
b + tl,q

n ) (20)

where tk
nκi

and Rk
nbi

represent the position and rotation of the
i-th keyframe of the k-th trajectory, tk

b is the alignment point
in the b-frame of the i-th keyframe. The alignment points
between two keyframes are determined by calculating the
correlation of magnetic field sequences. Given that keyframes
are extracted at equal intervals of 1 second, the spatial resolu-
tion of keyframes in underground parking scenarios ranges
from approximately 2 to 8 meters. This variability makes
it challenging to ensure a strict overlap between alignment
points and keyframes. The conversion relationship between an
alignment point and a keyframe can be expressed as follows:

tk
b = (Rk,p

n0b)T �tk
ni
− tk,p

n0

�
(21)

where tk,p
n0 and Rk,p

n0b represent the position and rotation of
the p-th keyframe of the k-th trajectory, respectively, and tk

ni

represents the position of the alignment point, corresponding
to the i-th sample of the k-th trajectory. These parameters are
estimated through multi-user joint VDR. It is important to note
that in pedestrian scenarios, the correction of the aforemen-
tioned closed-loop position constraint is not necessary. This is
because pedestrians typically move about 1 meter per second,
and choosing the nearest keyframe results in a closed-loop
position deviation of only around 1 meter. Additionally, the
accuracy of pedestrian dead reckoning is relatively low. Due
to these factors, the crowdsourced trajectory estimation for
pedestrians, as discussed in [29], is not significantly affected
by the potential misalignment between alignment points and
keyframes.

rmLC represents the magnetic field vector constraint at the
alignment point, defined as:

rmLC = Rk,p
nb Rk

bbi
(Mk

bi
− bk

m) − Rl,q
nbRl

bb j
(Ml

b j
− bl

m) (22)

where Rk
bbi

and Rl
bb j

represent the relative rotation from the
alignment point to the keyframe, which come from the multi-
user joint VDR, bk

m and bl
m represent the magnetometer

biases for the two trajectories, Mk
bi

and Ml
b j

represent the
magnetometer measurements at the alignment point, which are
obtained by linear interpolation of the original magnetometer
measurements.

The consistency constraint of the magnetic field vector at
the alignment point is inherently present when a loop closure is
established, and its reliability surpasses that of the aforemen-
tioned absolute and relative magnetic field constraints. While
the absolute constraint reduces noise impact on individual
cost functions through global averaging, and the relative
constraint is less influenced by spatial distribution differences
of magnetic field disturbances, both are still affected by spa-
tial position-related magnetic field disturbances. This results
in a constraint covariance that is necessarily greater than
the magnetometer measurement noise. In the context of rmLC ,
the alignment of the magnetic field sequence ensures that the
difference between measurements at two moments is almost
independent of magnetic field disturbances. Consequently, its

covariance can be considered to be solely within the bounds
of magnetometer measurement noise, making the constraint
more stringent. This constraint guarantees that magnetic field
vectors at the same spatial location remain consistent across
different trajectories, thereby further ensuring the consistency
of magnetometer bias estimation within the data of each
trajectory.

r f loor represents the floor constraint, assuming that the error
in estimating trajectory height on the same floor follows a
zero-mean Gaussian distribution.

r f loor = [tk,p
n ]z − z f loor (23)

where [tk,p
n ]z represents the elevation of the p-th keyframe of

the k-th trajectory; z f loor represents the average floor elevation.
The establishment of the floor elevation constraint relies
on floor clustering, which effectively mitigates inconsisten-
cies in elevations across different trajectories. Notably, even
keyframes that are not initially assigned to the correct floor
can have their elevations indirectly adjusted through the floor
elevation constraints applied to other keyframes within the
same trajectory. Global graph optimization and floor clustering
typically involve multiple iterations during the optimization
process. As a result, the elevations of keyframes not correctly
assigned in the current optimization round may already be
nearing the accurate floor height. In subsequent optimization
rounds, these keyframes might be correctly identified by floor
clustering as belonging to the appropriate floor. Ultimately, the
elevations of keyframes exhibiting horizontal movement will
gradually converge to the correct floor height.

The floor clustering algorithm is employed to ascertain and
reconstruct floor heights using crowdsourced vehicle trajec-
tories, addressing the limitations in vertical position accuracy
inherent in VDR. Prior to initiating floor clustering, keyframes
are categorized as either planar or non-planar, with only those
marked as planar being utilized in the analysis. Given the
limited reliability of VDR’s vertical velocity and displacement
data, we rely on the vehicle’s pitch to determine whether it is
traveling on a specific floor. The criteria for this assessment
are as follows:

1
n

nX
i=1

θi < γθ (24)

θ = tan−1 [Rnv]3,1q�
[Rnv]3,2

�2
+
�
[Rnv]3,3

�2
(25)

where Rnv = RnbRT
vb represents the rotation from the v-frame to

the n-frame, [·]3,1 represents represents the 3-th row and 1-th
column of the matrix, γθ represents the threshold set based on
experience.

Based on Equation 24, keyframes that move on a plane
are selected, and the floor clustering method groups these
keyframes by floor to minimize the height estimation error in
the trajectory. Figure 2 illustrates the detailed process of floor
clustering, which includes generating a height distribution
histogram, selecting cluster centers, and labeling samples for
each cluster. The specific steps are as follows:
Step 1: The height of each keyframe is extracted using the

vertical position data from the VDR trajectory output.
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Fig. 2. The flowchart of the floor clustering method. The left side shows the
height histogram processing flow.

A height distribution histogram is then constructed for
all keyframes, utilizing a bin size of 0.5 meters.

Step 2: A peak detection algorithm, enhanced with non-
maximum suppression, is employed to accurately
identify the peaks in the histogram.

Step 3: The average height of all samples within each identi-
fied peak is calculated to represent the average floor
height, denoted as z f loor.

The proposed method uses loop constraints to transfer
elevation information between trajectories, ensuring that the
elevation estimates of all trajectory data are uniform and
accurate. Through the iterative cycle of underlying clustering
and global trajectory optimization, each time a trajectory
segment is accurately clustered, its elevation parameters are
appropriately constrained. In addition, the elevation values
of other trajectories linked by loop constraints are also
adjusted synchronously. In the subsequent clustering stage,
these trajectories with improved elevation accuracy will obtain
higher-precision clustering results, thus establishing a self-
reinforcing improvement mechanism in the entire optimization
process.

V. EXPERIMENTS AND RESULTS

A. Experiment Description

The verification and evaluation experiments for this study
were conducted in two three-story underground parking lots:
one at a shopping mall and the other at a school dormitory
building. Due to space constraints on the first underground
floor, the experiments were limited to the second and third
floors. A point cloud representation of the experimental setting
is provided in Fig. 3. In Scenario 1, the second underground
floor of the parking lot covers approximately 14,000 square
meters, while the third floor spans about 7,000 square meters.

Fig. 3. Point Cloud of Experiment Scenario 1 and Scenario 2. (a) and (b) are
the second and third underground floor in scene 1, (c) and (d) are the second
and third underground floor in scene 2.

In Scenario 2, both the second and third underground floors
of the parking lot each cover approximately 20,000 square
meters.

Given the legal restrictions associated with crowdsourced
data collection in real-world scenarios, such as concerns over
personal privacy, we simulated crowdsourced vehicle data by
actively collecting data from smartphones within vehicles. For
detailed data collection guidelines, please refer to Sec V-B.
The dataset includes specific data such as the true trajectory
obtained from a laser SLAM system mounted on the vehicle.
This system ensures that the reference trajectory maintains a
consistency better than 5 cm, which is sufficient for evaluating
the crowdsourced mapping algorithm discussed in this study.

B. Crowdsourced Dataset Simulation

The characteristics and parameters of the simulated dataset
are outlined as follows:
• Sensor Configuration: The dataset comprises GNSS

positions recorded at a data rate of 1 Hz, along with
uncalibrated gyroscope, accelerometer, and magnetometer
observations recorded at 100 Hz. Given that only about
30% of smartphones are equipped with a barometer, the
proposed method excludes barometer observations. To
account for variations in smartphone hardware, data col-
lection was conducted using three different smartphones:
two Huawei Mate 40 Pro devices and one Xiaomi 11.
The dataset spans approximately 4 hours for Scenario 1
and 5 hours for Scenario 2.

• Smartphone Installation: In line with common prac-
tices for using smartphones in vehicle navigation, the
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Fig. 4. The installation position of the smartphone in the vehicle. Only the
sensor data of one smartphone is used in a single test.

smartphones in the dataset were mounted on brackets
attached to the vehicle windshield, as illustrated in Fig. 4.
Since the bracket allows for a high degree of freedom, the
installation posture of the smartphone was not restricted
to align with the vehicle’s moving direction, reflecting
typical user habits. To address potential performance
degradation in vehicle dead reckoning due to changes in
the smartphone’s position and orientation, the proposed
method integrates GNSS data, vehicle motion constraints,
and sensor observations to achieve automatic estimation
and compensation.

• Vehicle Dynamic: A user drives a vehicle from an
outdoor area into the indoor parking lot, makes a brief
stop, and then exits. This process is divided into two
stages. In the first stage, the vehicle reaches the parking
lot entrance, stops for a few seconds for authentication,
drives to a parking space, and stops again briefly. In the
second stage, the vehicle is started, pauses for a safety
check, drives to the exit, and stops for authentication.
Each continuous trajectory between the parking space and
the entrance/exit is treated as an independent sample, with
the trajectories from the first and second stages considered
as two separate samples. To account for variations in
driving habits, three drivers participated in data collection,
with no restrictions on their specific driving behaviors.
Additionally, to enhance dataset coverage within the
parking lots, parking spaces were selected to ensure even
distribution, maximizing route diversity and full coverage
of the parking area.

C. Evaluation Metric

The test data with reference truth is divided into two
parts for evaluation purposes: the first part of the test data
is dedicated to assessing the accuracy of the crowdsourced
magnetic field map. This segment consists of approximately
20 minutes of data in Scenario 1 and 45 minutes in Scenario 2,
and the second part of the test data is used to evaluate the
accuracy of magnetic positioning utilizing the constructed
magnetic map. This segment includes about 7 minutes of data
in Scenario 1 and 10 minutes in Scenario 2.

The estimated positions for the trajectories in the first
part are represented as {t̂0, . . . , t̂N}, while the corresponding
reference positions are denoted as {t0, . . . , tN}. The position
error Em of the estimated trajectory and the positioning error

Fig. 5. All vehicle trajectories in the dataset estimated by the proposed
method in scenario 1. Lines of different colors represent the different vehicle
trajectories.

Ep based on the magnetic sequence matching are used to
evaluate the performance of the proposed method.

The position error Em is defined as:

Em =
1
N

X
i∈[0,N]

‖Ra(t̂i − ta) − ti‖ (26)

where

{Ra, ta}

= arg min
{Ra,ta}

X
i∈[0,N]

‖Ra(t̂i − ta) − ti‖ (27)

‖ · ‖ is l2-norm. Ra and ta are 2D rotation and translation,
respectively.

Ep is the positioning error using the built magnetic sequence
fingerprint map that is alignment with the reference framework
using (26). The positioning method is a brute force sequence-
matching-based method [34], and a magnetic field sequence
withing the distance of 25 meters of the keyframe. Ep is
defined as:

Ep =
1
N

X
i∈[0,N]

‖t̂l
i − ti‖ (28)

where t̂l
i is positioning results, ti is reference position.

D. Performance Evaluation

Figure 5 illustrates all vehicle trajectories in the dataset
as estimated by the proposed method in Scenario 1. Sub-
figures (a), (b), and (c) represent the top, front, and side
views, respectively. Different colors are used to denote distinct
vehicle trajectories; however, due to the large number of
trajectories, colors are reused. In Figure 5(a), the estimated
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Fig. 6. All vehicle trajectories in the dataset estimated by the proposed
method in scenario 2. Lines of different colors represent the different vehicle
trajectories.

vehicle trajectories appear very smooth, and the overlap of
different trajectories within the same lane is so precise that
it becomes difficult to distinguish the floor level from a
bird’s-eye view. In Figures 5(b) and (c), the floors on which
the trajectories are located and the transitions between them
are clearly visible. The height fluctuations of most vehicle
trajectories within a single floor are minimal, typically only
a few decimeters. Figure 6 displays all vehicle trajectories in
the dataset as estimated by the proposed method in Scenario 2.
The trajectories in Scenario 2 are generally similar to those in
Scenario 1. However, several noticeable abnormal trajectories
are present in Scenario 2. These anomalies are primarily due
to the poor quality of the smartphone’s built-in sensor and its
mounting under the front windshield using a bracket. Although
the proposed algorithm includes a floor clustering method, it
does not strictly fix the height of vehicle trajectories on a
single floor due to slight slopes in real-world scenarios. As
a result, the algorithm may encounter potential inaccuracies
under these combined interference factors. Fortunately, during
the generation of magnetic maps, a screening mechanism is
employed to eliminate such abnormal trajectories, thereby
mitigating their impact on magnetic matching positioning.

Figure 7 illustrates the test vehicle trajectories estimated by
the proposed method. These estimated trajectories align well
with the reference trajectories, demonstrating a high degree of
overlap in their planar shapes. Notably, there is no significant
scale error in the estimated vehicle trajectories, which marks
an improvement over our previous work involving magnetic
map construction based on crowdsourced pedestrian data [29].
This improvement can be attributed to the relatively stable
dynamics of the smartphone when used in a vehicle, compared

TABLE I
THE MEAN, 68%, AND 95% OF THE POSITION ERRORS OF THE TEST

TRAJECTORIES AND MAGNETIC MATCHING POSITIONING (UNIT: M)

to the more variable manner in which pedestrians hold their
devices. The simpler dynamics allow the VDR to effectively
utilize vehicle motion constraints, resulting in more reliable
relative position estimation. Additionally, VDR offers depend-
able altitude estimation, with an error margin of only a few
decimeters—an accuracy level that is challenging to achieve
with Pedestrian Dead Reckoning (PDR).

Figure 8 presents the magnetic matching positioning results
based on the crowdsourced magnetic sequence fingerprint
map. Visually, these positioning results show good consistency
with the reference data, although they do not completely
overlap. There are systematic fixed deviations, particularly in
the elevation direction. These deviations are primarily due to
factors such as the low quality of smartphone sensors and
variations in vehicle motion, which introduce unavoidable dis-
turbances in the magnetic sequence fingerprint map generated
from crowdsourced vehicle trajectories. Additionally, flat areas
persist in the magnetic features of the underground parking
lot, influenced by the presence of ferromagnetic objects in
the environment. The limited width of the lanes in the under-
ground parking lot further contributes to this issue, as the
magnetic field features along the sides of the lanes provide
weak positional perception.

Figures 9 and 10 display the Cumulative Density Function
(CDF) of position errors for the test trajectories and magnetic
matching positioning. Table I provides the mean, 68%, and
95% position errors for both the test trajectories and magnetic
matching positioning. In scenario 1, the horizontal and height
errors of the estimated vehicle trajectory are 2.75 meters (95%)
and 0.41 meters (95%), respectively. The matching position-
ing error of the crowdsourced magnetic sequence map is
2.29 meters (95%). In scenario 2, the horizontal and height
errors of the estimated vehicle trajectory are 1.18 meters
(95%) and 0.59 meters (95%), respectively. The matching
positioning error of the crowdsourced magnetic sequence
fingerprint map is 2.13 meters (95%). The estimation accuracy
of vehicle trajectories in both scenarios is comparable, with
an elevation accuracy better than 0.6 meters. This indicates
that the proposed method is highly adaptable and capable of
accurately estimating crowdsourced vehicle 3D trajectories.
The magnetic matching positioning accuracy is comparable
to, or even slightly better than, the estimation accuracy of
the crowdsourced vehicle trajectories. This is because the
vehicle trajectories used in the evaluation represent only a
small portion of the dataset, whereas the magnetic matching
positioning stage utilizes the complete dataset and data filtered
by preset criteria to generate the magnetic sequence fingerprint
map.
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Fig. 7. The test vehicle trajectories estimated by the proposed method. The reference trajectories are represented in gray, and the estimated trajectories are
represented in other colors. (a) and (b) are for scenario 1, (c) and (d) are for scenario 2.

Fig. 8. Magnetic matching positioning results based on the crowdsourced magnetic sequence map. The red points are references, and the black points are
magnetic matching positioning results. (a) and (b) are for scenario 1, (c) and (d) are for scenario 2.

Fig. 9. The Cumulative Density Function of position errors of the test
trajectories and magnetic matching positioning for scenario 1.

Based on the test results, it is evident that the proposed
method can accurately determine 3D vehicle trajectories using

Fig. 10. The Cumulative Density Function of position errors of the test
trajectories and magnetic matching positioning for scenario 2.

only crowdsourced smartphone sensor data from vehicles.
This method effectively supports vehicle users in obtaining
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Fig. 11. All vehicle trajectories in the dataset estimated by the traditional
VDR in scenario 2. Lines of different colors represent the different vehicle
trajectories.

Fig. 12. All vehicle trajectories in the dataset estimated by the proposed
multi-user joint VDR in scenario 2. Lines of different colors represent the
different vehicle trajectories. (a) Top view, (b) Side view.

meter-level accuracy for indoor magnetic field matching posi-
tioning services.

E. Ablation Experiment

Figures 11 and 12 illustrate all vehicle trajectories in the
dataset, estimated by the traditional VDR and the proposed
multi-user joint VDR in scenario 2, respectively. All trajec-
tories are initialized at the origin with a starting heading
of zero. The multi-user joint VDR algorithm incorporates a
global magnetic field vector constraint on the vehicle heading,
resulting in trajectories that demonstrate clear consistency
in heading direction. Despite the magnetic interference from
the vehicle’s metal structure and electronic equipment, the
global magnetic field vector constraint remains effective after
correcting for the equivalent magnetometer bias. This ensures
improved heading accuracy and trajectory consistency across
multiple users.

Compared to the multi-user joint PDR for constructing
magnetic field maps using crowdsourced pedestrian data (as
discussed in our previous work [29]), the multi-user joint

Fig. 13. All vehicle trajectories in the dataset estimated by the inequality
constraint optimization in scenario 2. Lines of different colors represent the
different vehicle trajectories. (a) Top view, (b) and (c) Side view.

VDR offers significant accuracy advantages. The reasons for
this improved accuracy include: 1) Vehicles move faster than
pedestrians, allowing them to cover the same distance in a
shorter time. This results in higher relative accuracy for pure
gyroscope integration due to the reduced accumulation of
errors over time. 2) A single vehicle’s trajectory is typically
longer and covers a larger area. This extensive coverage
means the global magnetic field vector is less susceptible to
localized magnetic field interference, enhancing the reliability
of the data. 3) VDR provides more accurate estimates of the
horizontal attitude angle, which is crucial for using the mag-
netic field vector effectively in accurate heading estimation.
4) Smartphones installed in vehicles often benefit from more
stable and consistent mounting conditions. Additionally, the
vehicle’s predictable motion pattern can be leveraged to better
constrain the heading, further improving accuracy.

Despite the advantages of the multi-user joint VDR, it
does not fully restore the relative relationships between dif-
ferent trajectories and struggles with low height estimation
accuracy for vehicle trajectories. NHC constrains the vertical
and lateral velocities in the vehicle frame to zero. In the
underground garage dataset analyzed in this paper, the vehicle
undergoes frequent heading changes, leading to continuous
corrections of horizontal velocity in the navigation frame.
However, the projection of the vehicle’s vertical direction
in the navigation frame shows minimal variation and lacks
periodic error compensation characteristics, resulting in a
continuous accumulation of elevation error over time. Further-
more, frequent speed bumps and other indoor obstacles cause
vertical vehicle oscillations, undermining the NHC assump-
tion and negatively impacting vertical positioning accuracy.
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Collectively, these factors compromise the stability of NHC
and ultimately degrade vertical positioning performance.
Figure 13 illustrates all vehicle trajectories in the dataset, esti-
mated using inequality constraint optimization in scenario 2.
The magnetic feature-based trajectory keyframe association
provides accurate relative constraints between trajectories.
Building on this, the inequality global optimization effectively
restores the planar coordinates of vehicle trajectories, allowing
for clear lane differentiation. However, the height estimation
for vehicle trajectories, as depicted in Figures 13 (b) and (c),
remains inaccurate. This inaccuracy is primarily due to the
irregular distribution of speed bumps and manhole covers in
the underground parking lot, which cause significant smart-
phone vibrations. As a result, the benefits of vehicle motion
constraints in the elevation direction are greatly diminished. To
address this issue, an elevation clustering algorithm has been
integrated into the global trajectory optimization process. By
defining the optimization problem through multiple iterations,
as shown in Figure 6, the accuracy of vehicle trajectory
estimation is further enhanced. This iterative approach helps
mitigate the effects of vertical disturbances and improves the
reliability of height estimations.

In summary, the multi-user joint VDR effectively captures
crowdsourced vehicle trajectories with consistent headings,
which significantly supports the feasibility of the proposed
method. Building on this foundation, trajectory optimiza-
tion with inequality constraints enhances the reliability
of trajectory correlation information, which would oth-
erwise depend solely on magnetic features. Furthermore,
by employing global trajectory optimization with equality
constraints, the method achieves precise estimation of crowd-
sourced vehicle trajectories and facilitates the generation
of accurate magnetic sequence maps. This comprehen-
sive approach ensures improved accuracy and reliability in
mapping vehicle movements and the surrounding magnetic
field.

VI. CONCLUSION AND FUTURE WORK

Indoor magnetic matching is a viable method for navigating
multi-floor parking lots, but it requires reducing mapping costs
through the use of crowdsourced data. To tackle this challenge,
this paper introduces a novel approach for constructing a
magnetic map using crowdsourced vehicle data. Initially, the
method employs a multi-user joint Vehicle Dead Reckoning
(VDR) based on graph optimization, which establishes incre-
mental vehicle motion constraints and magnetic field vector
consistency constraints within the same space. This process
results in the estimation of crowdsourced vehicle trajectories
with consistent directions. Subsequently, the method con-
structs associations between different vehicle trajectories using
the multi-attribute characteristics of the magnetic field. Finally,
a two-step global trajectory optimization method incorporating
inequality and equality constraints is proposed. The inequality
constraint streamlines the optimization process, allowing for
quick verification of trajectory correlation information and the
acquisition of accurate initial values. Building on this, the
equality constraint iteratively refines the optimization problem

to achieve precise estimation of crowdsourced vehicle trajec-
tories and the generation of magnetic sequence fingerprint
maps.

The test results from simulated data in two three-story
underground parking lots demonstrate that the proposed
method, utilizing only on-board smartphone sensor data,
achieves plane and elevation errors in the crowdsourced vehi-
cle trajectory estimation of less than 2.75 meters (95%) and
0.59 meters (95%), respectively. Furthermore, the magnetic
matching positioning error, based on crowdsourced magnetic
sequence maps, is less than 2.29 meters (95%). These findings
confirm the feasibility of the proposed method and indicate
that the magnetic sequence fingerprint map generated from
crowdsourced vehicle data can effectively support meter-level
indoor positioning services.

The test results in this paper utilize user-active data to
simulate crowdsourced vehicle data, maintaining an ideal
state for smartphone data. However, in real-world scenarios,
crowdsourced in-vehicle smartphone data is often complex,
with significant amounts of abnormal and unavailable data,
presenting a challenge for the proposed method. In the future,
we plan to use in-vehicle smartphone data from actual users
driving in real-world conditions to assess the performance of
the proposed method. This will allow us to further iterate and
optimize the method to better handle the complexities and
variability of real-world data.
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